
MODEST – A UNIFIED LANGUAGE FOR QUANTITATIVE MODELS

Arnd Hartmanns

Saarland University – Computer Science, Saarbrücken, Germany

ABSTRACT

MODEST is a behavioural modelling language for stochastic
timed systems, which allow the representation of both prob-
abilistic and real-time aspects together with nondeterministic
decisions and abstractions. Rooted in process algebra, it has
an expressive syntax enriched with features from program-
ming languages, leading to concise models with a clearly de-
fined semantics. A key idea behind MODEST is the single-
formalism, multiple-solution approach: A range of analysis
options such as discrete-event simulation and different vari-
ants of model checking are available for a single MODEST

model. This paper gives an introduction to the MODEST lan-
guage and its underlying semantics, followed by a survey of
the current state of analysis approaches and successful appli-
cations of MODEST to a diverse range of case studies.

1. INTRODUCTION

Our reliance on complex safety-critical or economically vital
systems such as fly-by-wire controllers, networked industrial
automation systems or “smart” power grids increases at an
ever-accelerating pace. The necessity to study the reliability
and performance of these systems is evident. Over the last
two decades, significant progress has been made in the area
of formal methods to allow the construction of mathemati-
cally precise models of such systems and automatically eval-
uate properties of interest on the models. Classically, model
checking has been used to study functional properties related
to correctness such as such as “the system will never reach a
bad state” (safety) or “whenever the traffic light is red, it will
become green again in the future” (liveness). However, since
e.g. correct system implementations may still be unusably
slow or energy-consuming, performance requirements need to
be considered as well. This need to evaluate both qualitative
as well as quantitative properties fostered the development of
integrative approaches that combine probabilities, real-time
aspects or costs with formal verification techniques [1], al-
lowing questions such as “what is the expected time until a
task is completed” or “what is the minimum probability of
success without exceeding battery capacity” to be answered.

Today, quantitative modelling and analysis is supported
by a wide range of tools and formalisms such as—to name
only a few examples—the CADP [2] toolkit centered around
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the LOTOS language [3], PRISM [4] and similar tools [5, 6, 7]
operating on guarded commands, or UPPAAL [8], which al-
lows the graphical modelling of networks of timed automata
(TA, [9]). Notably, most of the mentioned tools, which come
from a model-checking background, now also feature dedi-
cated simulation or performance evaluation features [10, 11].
The variety of different languages used by tools in this area,
however, is a major obstacle for new users seeking to apply
formal methods in their field of work. Most input languages
are understood by only a single tool, which in turn is usually
dedicated to a particular formalism (such as probabilistic, but
not real-time systems) or even a specific analysis method (e.g.
steady-state analysis, but not transient properties or bounded
model checking).

MODEST [12], on the other hand, is a language designed
to be as expressive as possible instead of being restricted to
particular analysis approaches. It has a formal semantics in
terms of stochastic timed automata (STA), which are a rich
formalism that includes nondeterministic and discrete proba-
bilistic choices as in probabilistic automata (PA, [13]), hard
real-time behaviour as in TA as well as stochastic sampling
and delays according to arbitrary probability distributions. In
fact, many well-known and extensively studied models such
as Markov chains, PA or TA are special cases of STA, and
most are easy to identify on the syntactic level in MODEST.
While rooted in process algebra, MODEST borrows syntax
and concepts from widely-used programming languages to
make the language accessible to programmers and engineers.
At the same time, its expressive syntax allows complex mod-
els to remain concise and readable.

As an overarching language for models focussing on
many different qualitative and quantitative aspects, MODEST

was—at the time it was designed—too expressive for a sin-
gle tool to provide comprehensive analysis and verification
support. MODEST has thus been designed with a single-
formalism, multiple-solution approach in mind: Analysis
tools for MODEST focus on restricted subsets of the language
(and thus on different submodels of STA) or specific analy-
sis methods, reusing existing tools as backends in order to
avoid unnecessary reimplementations. This allows a single
model to be analysed with a range of methods. For example,
consider the PA subset: A state-of-the-art probabilistic model
checker such as PRISM can be used as backend to perform a
fully probabilistic analysis. For functional properties, though,
it often suffices to consider an overapproximation of the PA



where probabilistic choices have been replaced by nonde-
terministic ones. If the PA model is written in MODEST,
a backend based on an efficient non-probabilistic model
checker such as CADP could be used for a much faster quali-
tative analysis without first writing an entirely new model in
LOTOS. Although quantitative evaluation of the entire STA
model spectrum is now within reach [14, 15], the MODEST

approach is still as valid as it ever was, since more specialised
tools typically provide significant performance gains and of-
ten support classes of properties not available in the more
general tools.

Paper outline. The first part of this paper focusses on
the single-formalism aspect with a brief introduction to the
MODEST language and the STA formalism (Section 2), in-
cluding an example from communication protocols to convey
a more tangible intuition of the language. After that, we turn
to the current state of the multiple-solution part, giving an
overview of the current tool support for MODEST in Sec-
tion 3 followed by a survey of previous applications and case
studies that used MODEST in Section 4.

2. THE MODEST LANGUAGE

MODEST is an expressive language, both in terms of syntax
and semantics. In this section, we first highlight the semantic
features, and then look at the language syntax, including a
small example.

2.1. Stochastic Timed Automata

Table 1 (adapted from [12, Table IV]) gives an overview of
the features and submodels of STA, where nondet. choices
denotes nondeterministic choices between different edges
from the current location, prob. choices means that edges
lead into (finite-support) probability distributions over tar-
get locations and assignments, nondet. delays and stochastic
delays refers to the possibility of specifying delays whose
duration is nondeterministic or stochastic according to some
probability distribution (where EXP is the exponential dis-
tribution), clock variables means that more complex time
behaviour than nondeterministic or stochastic delays can be
specified using clocks, and compositionality denotes mod-
els for which a natural parallel composition operator exists.
The submodels listed are generalised semi-Markov processes
(GSMP, [16]), probabilistic timed automata (PTA, [17]),
timed automata (TA, [9]), probabilistic automata (PA, [13])
or Markov decision processes (MDP), labelled transition sys-
tems, Markov automata (MA, [18]) or interactive Markov
chains (IMC, [19]), continuous-time Markov decision pro-
cesses (CTMDP), as well as continuous- and discrete-time
Markov chains (CTMC/DTMC).

MODEST has recently been extended to support the spec-
ification and analysis of stochastic hybrid automata (SHA)
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Table 1. Submodels of stochastic timed automata (STA)

P ::= act | stop | abort | break | P1; P2 | when(e) P |

urgent(e) P | invariant(e) P | alt { ::P1 . . . ::Pk } |

do { ::P1 . . . ::Pk } | par { ::P1 . . . ::Pk } |

act palt { :e1: asgn1; P1 . . . :ek: asgnk; Pk } |

ProcName(e1 , . . . , ek ) | throw(excp) |

try {P } catch excp1 {P1 } . . . catch excpk {Pk } |

relabel { I } by {G } {P } | extend {H } {P }

Fig. 1. Syntax of MODEST process behaviours [12]

models [14]. SHA extend STA by adding continuous be-
haviour governed by differential inclusions. General stochas-
tic hybrid systems are not the focus of this paper; however,
a special case are rewards or costs, where a reward or cost
variable increases at a constant rate over time (or by fixed
amounts on taking an edge). This allows so-called priced vari-
ants of most of the models listed above, for example priced
probabilistic timed automata (PPTA, [20]), to be modelled in
MODEST as well.

2.2. Syntax and Semantics

MODEST is inspired by process algebras like CCS, CSP or
LOTOS. At the core of a MODEST model are processes and
process behaviours. Processes are names for a process be-
haviour and a set of local variables. Process behaviours are
used to describe the behaviour of a process or a model, such
as performing an action, throwing an exception or recursively
calling a process. Simple process behaviours are composed
into more complex ones using a set of operators such as non-
deterministic choice between behaviours (the alt construct)
or the sequential composition of two process behaviours (the
; operator). Process behaviours are constructed and composed
according to the grammar shown in Figure 1, where act de-
notes an action name, e ranges over expressions (which are
mostly similar to side effect-free expressions from program-
ming languages such as C or ML), asgn ranges over sets of
comma-separated assignments (enclosed in {= . . . =} blocks
syntactically), and I , G and H are lists of action names.



par {
:: Sender()
:: relabel { put, get } // sender to receiver

by { put_data, get_data } Channel()
:: relabel { put, get } // receiver to sender

by { put_ack, get_ack } Channel()
:: Receiver()

}

Fig. 2. Overall behaviour of the BRP model in MODEST

The when and urgent constructs are used to add a guard—
an enabling condition—or a deadline to an edge in the un-
derlying STA, while invariant adds a location invariant. alt
and do allow a nondeterministic choice between process be-
haviours, with do being a looping alt that can be left using
break. Similarly, palt represents a probabilistic choice over
a finite set of alternatives, each of which is given a weight.
The fraction of an alternative’s weight over the sum of all
weights of a palt determines its probability. Each alternative
also includes an assignment, which in turn can assign ran-
domly sampled values to variables, e.g. x = Uniform(0, y).
The par construct is used to let a set of process behaviours run
independently in parallel, possibly synchronising on certain
actions. In this context, relabeling actions and extending ac-
tion alphabets can be useful. Finally, throw and try/catch are
used to raise and handle exceptions, which is a useful feature
imported from programming languages like Java or C# that is
not typically supported in a process-algebraic approach.

A formal definition of the semantics of these constructs in
terms of structural operational semantics (SOS) rules can be
found in [12]. MODEST actually has a two-step semantics:
A MODEST model is first mapped to a STA, which is a sym-
bolic model that still contains variables (including clocks) and
keeps guards, deadlines, invariants, weights and assignments
as (symbolic) expressions. For example, each edge is labelled
not only with its action label for synchronisation, but also
its guard and deadline (cf. Figure 4). Similar to TA or PTA,
the concrete semantics of an STA itself is then defined as an
uncountably infinite-state, infinitely-branching timed proba-
bilistic transition system (TPTS).

2.3. Modelling Example

As an example, let us consider the bounded retransmission
protocol (BRP, [21]), a communication protocol originally
proposed by Philips that adds an upper bound on the number
of retransmissions to the well-known alternating bit protocol.
We model the scenario of a sender that tries to transmit some
file, partitioned into N chunks of data, to a receiver. A nat-
ural model of this setting will thus consist of four parts: One
component representing the sender, one representing the re-
ceiver, and two components representing the communication
channel (or: medium) from sender to receiver and vice-versa.

A realistic model of the BRP includes both real-time as-

action put, get;
process Channel() {

clock c;
put palt {

:98: {= c = 0 =};
// transmission delay in [TMIN,TMAX]
when(c >= TMIN) invariant(c <= TMAX) get

: 2: {==} // message lost
}; Channel()

}

Fig. 3. An unreliable communication channel in MODEST

true

c ≤ TMAX

Channel:

put, true, false 0.98, {c := 0}

get, c ≥ TMIN,
false , ∅

0.02,∅

Fig. 4. STA for the unreliable communication channel

pects, namely transmission delays in the channels and the cor-
responding timeouts on the sender and receiver sides [22], as
well as probabilistic choices, namely the loss of messages on
the communication channels [23]. The actual delays and loss
probabilities to be used will depend on the type of communi-
cation channel under study; the loss probability, for example,
will be significantly higher for wireless communication com-
pared to, say, a fiber channel link.

The BRP is thus a good example to show how these as-
pects are combined in MODEST. The four model components
can be represented as separate processes that synchronise on
certain actions, such as a put_data action that is used when
the sender puts data on the channel towards the receiver. The
process behaviour representing the entire system will then be
the parallel composition of one instance of each process (Fig-
ure 2), with some renaming of actions in order to use just
one process declaration (as a sort of template) for both chan-
nel instances. Since the MODEST code for the Sender and
Receiver processes is too large to be shown here1, let us
focus on the communication channel. The MODEST model
for the Channel process, which synchronises with sender
and receiver via actions put and get, is listed in Figure 3.
We see the use of the palt construct to model the probabilistic
choice of message loss, and the combination of guards and in-
variants to specify a nondeterministic transmission delay. The
STA semantics for this process is shown in Figure 4.

The properties that we will be interested in for this model
fall into four categories:

Invariant properties: We check for absence of premature
timeouts (TA1) and that the sender starts a new file only
after the receiver has properly reacted to failure (TA2).

1The full model of the BRP and models of other case studies are available
as part of the MODEST TOOLSET download (see Section 3.1).



Probabilistic reachability: We ask for the worst-case prob-
ability that eventually, the sender (PA) reports a certain
unsuccessful transmission but the receiver got the com-
plete file, (PB) reports a certain successful transmission
but the receiver did not get the complete file, (P1) does
not report a successful transmission, and (P2) reports
an uncertainty on the success of the transmission.

Probabilistic time-bounded reachability: We determine
the worst-case probability of the sender reporting a
successful transmission within 64 time units (Dmax).

Expected-time reachability: What is the worst-case ex-
pected time until the transfer of the first file is finished,
successfully or unsuccessfully (Emax)?

All properties considered above ask for the maximum proba-
bility over all resolutions of nondeterminism, which for these
properties corresponds to the worst-case scenario; asking for
minimum probabilities is, of course, equally possible.

3. TOOL SUPPORT

The guiding principle in tool development for the MODEST

language is to reuse existing analysis engines and algorithms
where available in order to avoid unnecessary reimplemen-
tation work. The first set of MODEST tools, MOTOR [24],
provided connections to the MÖBIUS [25] discrete-event sim-
ulator and CADP for model checking. Development of a new
MODEST TOOLSET, aimed to overcome usability and main-
tainability shortcomings of MOTOR, started in 2008.

3.1. The Modest Toolset

The MODEST TOOLSET consists of five tools that aid in the
modelling process and allow the analysis of MODEST models:

mcpta. The mcpta tool [26, 27] provides model-checking
support for models that correspond to the PTA subset of
MODEST, i.e. models that do not use any infinite-support
probability distributions. By default, it uses a digital clocks
semantics [28] to transform PTA into (untimed) PA, which
are then analysed using PRISM as a backend. As long as
the original PTA are diagonal-free and do not contain clock
constraints with strict comparisons (e.g. c < 3), this transfor-
mation preserves the values of unbounded, time-bounded and
cost-bounded probabilistic and expected reachability prop-
erties, but in particular not of PTCTL formulae with nested
probability operators.

Native support for PTA has recently been added to
PRISM [4] and its input language, with analysis support based
on both digital clocks as well as a game-based approach [29].
Current versions of mcpta also support the transformation of
MODEST models into the new PRISM PTA syntax, as well
as automated model-checking using the new game-based
analysis engines in PRISM in the background.

mctau. In order to take advantage of UPPAAL’s model-
checking engine for networks of TA and its graphical mod-
elling and model debugging features, both UPPAAL and
MODEST were extended in order to make a transforma-
tion between the two languages possible. The result of
these efforts is the mctau [30] tool that brings specialised
model-checking of TA (which are also covered, though less
efficiently, by mcpta) and export to a graphical automata-
based formalism (with automatic graph layout) to MODEST.
mctau also supports the analysis of PTA models by overap-
proximating probabilistic choices with nondeterministic ones
and modifying the properties of interest accordingly. This
is particularly useful for model debugging, since the non-
probabilistic analysis is usually significantly faster than the
probabilistic one.

modes. The replacement of MOTOR’s MÖBIUS-based sim-
ulation component in the MODEST TOOLSET is modes [31],
a standalone discrete-event simulator for MODEST. The mo-
tivation for the development of modes was that simulation
cannot be used for nondeterministic models, but most sim-
ulation tools—including MOTOR/MÖBIUS—ignore this re-
striction, using hidden schedulers to resolve the nondetermin-
ism, which may influence the simulation results in unexpected
ways [27]. modes in turn refuses nondeterministic models
(i.e. models that correspond to the STA, but not the GSMP
subset), but allows the schedulers typically used in other tools
to be requested explicitly by the user. In order to be able to
simulate true STA models without using questionable sched-
ulers, modes also includes a novel partial-order based ap-
proach to detect spurious nondeterminism, i.e. nondetermin-
istic choices that to not influence the simulation results, and
ignore these [15], thus for the first time allowing a sound
treatment of nondeterministic models with a simulation-based
tool. A recent addition to modes is support for statistical
model checking (SMC, [32, 33, 34]), which is the combina-
tion of discrete-event simulation with sequential tests [35].

mime. mime is a graphical user interface that supports edit-
ing MODEST models with syntax and error highlighting and
that integrates the mcpta, mctau and modes analysis engines
in a seamless fashion.

mosta. To give a better understanding of the STA semantics
of MODEST code, mosta can be used to transform it into a
graphical representation of the underlying STA. mosta uses
the Graphviz “dot” tool for automata layout.

Tool availability. The MODEST TOOLSET is freely avail-
able for academic users at www.modestchecker.net.



mctau mcpta modes
TA1 true true true (all runs satisfied TA1)
TA2 true true true (all runs satisfied TA2)
PA 0 0 0 (no observations in 10k runs)
PB 0 0 0 (no observations in 10k runs)
P1 [0, 1] 4.233 ∙ 10−4 μ=3.0 ∙ 10−4, σ=1.7 ∙ 10−2

P2 [0, 1] 2.645 ∙ 10−5 0 (no observations in 10k runs)
Dmax [0, 1] 9.996 ∙ 10−1 μ=9.9 ∙ 10−1, σ=1.7 ∙ 10−2

Emax n/a 33.473 μ=33.473, σ=2.136

Table 2. Results for the BRP model (16, 2, 1)

3.2. Example Analysis

As a first step to analyse our example model of the BRP (here
using instance (16, 2, 1), i.e. with a file of 16 chunks, up to 2
retransmissions, and TMAX = 1, TMIN = 0), we use mctau
and its automatic overapproximation of probabilistic choices.
Table 2 summarises the results of the different tools; we see
that mctau is able to obtain the exact value for the invariant
properties and those probabilistic properties that have value 0.
mctau cannot handle the expected-time property Emax, and
cannot safely conclude that the probability for the remaining
properties is zero or one.

We then use mcpta to perform a full probabilistic analy-
sis, which takes noticeably longer than the quick check with
mctau (still <1 min for this small example), but yields precise
results for all properties considered.

The very same model can also be simulated with modes;
however, the results in Table 2 show that this particular model
is not very well-suited for simulation because we are inter-
ested in rather rare events, some of which were never ob-
served in 10000 simulation runs that also took significantly
longer than model-checking. In the table, μ is the mean and
σ is the standard deviation of the assumed normal distribution
for the results. For property Emax, which is not a rare event
but an expected value, modes performs very well; in gen-
eral, the advantage of simulation is that it is not subject to the
state-space explosion problem and can thus handle arbitrarily
large model instances, as well as more complex properties.
We also note that this model has a nondeterministic delay if
TMIN 6= TMAX; for simulation, we thus set both to 1.

3.3. Outlook

There is a wide range of existing tools that could feasibly
be connected with MODEST in a similar way to PRISM (via
mcpta) and UPPAAL (via mctau). The main feature that a po-
tential new backend should support is a compositional input
formalism that allows a set of automata or modules to run in
parallel with a synchronisation mechanism (CSP-style multi-
way, CCS-style binary or UPPAAL-style broadcast) compati-
ble with MODEST. Connections to non-compositional mod-
els are possible (for example, our recent hybrid extensions

connect MODEST and PHAVER), but limited to small mod-
els due to the size explosion incurred by unrolling parallel
composition. That said, an obvious target for the next tool
in the MODEST TOOLSET is CADP, to reestablish the bridge
that was present in MOTOR and allow model checking of LTS
as well as performance evaluation for IMCs, but we are very
open to any other suggestion backed by an application need
and to collaboration with tool authors.

4. APPLICATIONS

MODEST and its supporting tools have been used in a diverse
range of applications, spanning areas such as communication
protocols, scheduling, and dependability analysis. We present
a survey of the MODEST case studies in this section.

4.1. Communication Protocols

As mentioned in Section 2.3, STA/PTA are a particularly
well-suited formalism to model communication protocols,
since they usually deal with probabilistic message losses and
transmission delays. An early use of MODEST in this area
was to analyse two different protocols to monitor nodes in a
dynamic network [36] to detect when a node disappears and
thus make the network self-configuring. Using the simulation
capabilities of the original MOTOR tools, it could be shown
that a protocol proposed as an extension of the UPnP standard
could lead to unfair and oscillating behaviour that negatively
affects power consumption of network devices, while a much
simpler protocols avoids these problems.

Abstract models of three communication protocols were
also used as case studies for mcpta, since the PTA subset
precisely captures the features needed to model most proto-
cols [26]. The protocols studies were the BRP presented in
Section 2.3, IEEE 802.11 WLAN, and CSMA/CD as used in
Ethernet (IEEE 802.3). In contrast to the BRP, the latter two
are inherently probabilistic due to the use of randomised algo-
rithms to resolve contention. Different modelling approaches,
including a straightforward pattern to (mechanically) trans-
form a graphical model given as automata into a (text-based)
MODEST model, were also explored in that paper.

4.2. Wireless Sensor Networks

In wireless sensor networks (WSN), where small sensor
nodes communicate in a self-configuring mesh-style net-
work, the issues typically arising in communication protocol
design are compounded by limited computational resources
and power constraints, with nodes ideally running for years
on small batteries. Protocols to be used in WSN thus have
to be both simple and efficient, and their analysis has to take
these additional quantitative dimensions into account.

A range of studies has been performed in this area us-
ing MODEST, with a prime example of the focus on power



consumption being the analysis of the energy implications
of different options of IEEE 802.15.4, which is the basis of
e.g. ZigBee. This analysis [37] also took the consequences
of drifting clocks into account. It was performed using sim-
ulation with MOTOR, as was a later study that focused on
latency and, again, energy efficiency, this time comparing the
simple and distributed slotted Aloha MAC protocols on dif-
ferent topologies [38]. This later study also used an advanced
radio/interference model that is more realistic than the overly
simplified unit disk model used in many other models.

Recently, the mcpta and modes tools of the MODEST

TOOLSET have been used to evaluate the dependability of a
safety-critical system of wireless sensors and actuators with
hard real-time requirements [39]: Using both simulation and
model checking on a single base model, the safety of a wire-
less braking system for bikes was proven. The model, in this
case, comprised both the link and application layers.

4.3. Dependability

In the realm of dependability analysis, very abstract models of
complex systems are typically used to obtain measures for e.g.
availability or reliability. It is often desirable to use graphi-
cal modelling formalisms specialised for dependability in or-
der to allow domain experts to perform the modelling without
needing detailed knowledge of more complex (and more gen-
eral) formalisms. In this spirit, MODEST itself has been pro-
posed as a backend for two such dependability-focused for-
malisms: STOCHARTS [40] and ARCADE [41].

As a case study for the use of MODEST in conjunction
with STOCHARTS, the GSM-R radio communication used for
the next-generation train control system in Europe (ETCS)
has been analysed [40]. This system shares many aspects with
the communication protocols described above; the model in
particular includes probabilistic delays as well as hard real-
time requirements.

In evaluating the transformation of ARCADE models to
MODEST and the subsequent analysis using the modes sim-
ulator [15], two well-known models—a distributed disk ar-
chitecture, where several hard disks operate in clusters with
repairs being performed in a first-come-first-serve manner if
disks fail, and a reactor cooling system with a heat exchanger,
two pump lines for redundancy and a bypass system—have
been used. The partial order-based features of modes were
applied in these cases since the models contained spurious
nondeterministic choices.

4.4. Renewable Energy Generation

Energy markets and electricity networks are becoming in-
creasingly complex distributed systems through the rapid
deployment of microgenerators, in particular in the form of
photovoltaic generators on the rooftops of individual homes.
Managing electricity networks to balance production and

consumption turns out to be a difficult problem as produc-
tion, in addition to consumption, now becomes a stochastic
process (as e.g. the amount of sunlight varies throughout the
day, depending on weather and cloud movements).

Current regulations in Germany to control photovoltaic
microgenerators in situations of electricity overproduction are
simplistic, and may lead to oscillatory behaviour that puts
the stability of the electric grid at stake. MODEST and the
MODEST TOOLSET have recently been used to study control
algorithms for such microgenerators [42, 43]. Inspired by the
way computer networks such as the Internet are managed in
a decentralised, self-stabilising way, a set of randomised al-
gorithms has been evaluated in terms of grid stability, avail-
ability and fairness using the modes simulator. The results in-
dicate that taking ideas from communication protocols to use
randomised, distributed control schemes, which also benefit
from privacy advantages compared to centralised coordina-
tion, may be a promising way to solve the problems inherent
in the power grid of the future.

4.5. Industrial Production Scheduling

Finally, in a completely different approach, MODEST and the
MOTOR simulation tools have been used to evaluate sched-
ules in a resource-constrained production process [44]. The
concrete case study was production of a set of lacquers ac-
cording to different recipes. Every recipe differs in the kind
and order of production steps—and thus in the manufacturing
resources—needed, and includes different timing require-
ments and interdependencies for the individual steps. As a
first step, optimal starting times for production jobs were
heuristically determined using MODEST models and simula-
tion, using a stochastic model of machine breakdowns and
an approximation of resource conflicts through a load model.
Based on these starting times, cost-optimised production
schedules were generated using the UPPAAL CORA tool [45]
from priced timed automata models representing the resource
conflicts in a precise way. As a last step, the performance and
stability of the generated schedules was evaluated by using
stochastic simulation with MODEST and MOTOR again.

5. CONCLUSION

In this paper, we have motivated the need to consider more
than pure functional properties when evaluating complex
systems. MODEST is a modelling language that aims to
unify the construction and analysis process for models that
contain quantitative aspects such as probabilistic decisions,
real-time behaviour and requirements, and costs such as
energy consumption or resource constraints. Based on a
single-formalism, multiple-solution approach, the second-
generation MODEST TOOLSET provides a growing collection
of tools to support modelling and analysis with MODEST.
Simulation and model-checking tools for MODEST have



reached a stable state, as evidenced by a number of case stud-
ies showing that the language and the tools can be applied
to a varied set of problems. Nevertheless, there is still a
wide range of work on specialised tools and applications that
deserves to be connected to MODEST, either by specifying
models in the MODEST language and thus opening up new
analysis pathways for interesting and challenging case stud-
ies, or by connecting new tools as backends to the MODEST

TOOLSET in order to allow them to be used with existing
models and to further strengthen the multiple-solution aspect
of the MODEST approach.
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